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1.0 INTRODUCTION

1.1 General Discussion

Advanced applications of robotic and automation technology to

manufacturing processes and to remote environments such as space
and underwater require the performance of complicated but somewhat

unspecified tasks. These tasks, usuvally performed by humans, are

unspecified in the sense that they are goal-oriented but without
detailed algorithms or methodologies. Furthermore, automated
systems capable of performing these tasks must often operate with
incomplete or incorrect process models, noisy sensor data, and
various constraints,

Tasks for robots can be classified in a number of ways. We
tend to define the tasks into two broad classifications -
deterministic and non-deterministic. Deterministic tasks tend to
be dominated by geometry, part placement, pegs-into-hole, machine
load/unload, etc. (Figure 1-1){1),

Non-deterministic tasks are those done by skilled people
involving processes for which models either do not exist or are
poorly understood. Other non-deterministic tasks involve
inspection or data interpretation and planning(2,3),

The hypothesis of this grant is that the non-deterministic
class of problems is amenable to the techniques and methodologies
of control system engineering, a discipline which provides a
tractable approach for addressing the issues for intelligent
systems with cost effectiveness and performance optimality.

The objectives of this grant are:

a. To explore the use of adaptive-learning control systems
to complex processes, or engineering-based expert systems
to an inspection type task., Both types of tasks, which
are usually performed by humans, involve modeling and
control or automatic data interpretation in the presence

of noisy data with incomplete and time-varying models,

~
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b. To determine the relevance of these approaches to

research on intelligent robotic systems.

c. To determine a focus for testing these theories both

analytically and experimentally, if possible.

N

1.2 Problem Statement

Present-day industrial robots and programmable automation
systems(4,5,6) generally perform deterministic tasks. These
systems operate with minimal sensing and use a control strategy
based on open-loop positioning. That is, the reproducibility of
the process is determined by the reproducibility of the machine,
the tooling used to hold parts, and the quality of the parts
themselves. Sensor requirements for deterministic tasks are
modest, mainly monitoring or sequence verification. Examples are
presence/absence of parts, task initiation/completion, unexpected
hazard and safety. There is a range of sophistication. The
classic example is pegs into chamfered holes(1), Early work
suggested 6-axis force sensing and control, (7-10) yhich is
intellectually interesting but a little slow, complicated and
expensive. More clever devices(11,12,13) yere faster and less
complex. The Remote Center Compliance (RCC)(11'12) is even
simpler, requires no sensing, has reasonable bandwidth, and is
relatively inexpensive (Figure 1~2). More interesting is the
problem of pegs into square or non-chamfered holes - "chamferless
insertion." At the Draper Lab, the solution has been a kinematic
inversion{14,13) (fFigure 1-3). It is simple and elegant but
seldom used. A more interesting solution is a software kinematic
inversion(16) using the Instrumented Remote Center Compliance
(IrcCc)(16+17), The IRCC is simply the RCC with added positional
sensors for monitoring the displacement of the engineered
conpliances of the RCC., Since the compliances are known the

position sensing can be interpreted as a displacement vector
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Kinematic Inversion

1-3.

Fiqg.

Mechanical

Chamferless Insertion




caused by positioning errors, angular misalignment, small hole
or high piece part tolerances or as a force vector resulting from
such errors.,

Other uses of the IRCC arise from having a "smart finger" on
the end of the robot., Automatic teaching, automatic calibration/
recalibration, time~position error monitoring are some of the
applications(16), mypical devices have 3 to 6 axes of
measurement, so it is possible to monitor either the principal
errors or the full error vector including time and environment
dependency. Since IRCC's have relatively large position motion
compared to 6-axis force sensors(18,19) they are easier to
protect from mechanical overloads.

The above listing of tasks and technologies are merely
illustrative. Admittedly, there is a slight bias towards using
the minimum technology to accomplish the desired task.

Non-deterministic tasks are more interesting and challenging
technically. Further, they provide the intellectual base and
arguments for intelligent robots. At this point, we really have
not attempted to completely classify them. Some classifications
are tasks involving process control, monitoring/ingpection tasks,
and planning tasks. Problems, of course, can be hybrids of these
three, Assembly systems usually involve all three. Today the
three activities are usually discrete; manufacturing functions
are not an integrated activity.

Figures 1-4 and 1-5 illustrate the two types of tasks that
have been explored under this grant(20), nNamely, a process task
and an inspection task. Automatic planning functions are not part

of this grant, However, similar approaches to planning can be

found in references (2) and (3).
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Figure 1-4 illustrates a manual qrinding/finishing task and

Figure 1-5(20,21) jliustrates the data interpretation task of

low-speed dynamometer torque traces for precision ball bearings. :?'"12
Figure 1-4 represents the type of process tasks done by skillful :}
people. Typically these are tasks where complete or partial ta
process models do not exist, performance requirements are not h’N ¥
quantifiably stated, and process parameters are time and "
environment dependent. Yet these tasks are routinely carried out 5;;

by people. For the task shown in Figure 1-4 (automobile body
finishing) the typical process sheet instruction to the operator
states "grind it smooth." The trivial question is "What robot
system or mechanization can you turn to and tell it to 'grind it
smooth'?"
The grinding/finishing task involves three complicated

activities and several minor ones. The principal ones are
surface reconstruction, process control, and dynamic surface
measurement interaction. By surface reconstruction we mean
discrete surface measurements and associated algorithms necessary
to describe the surface in some convenient computational frame of
reference. Minor tasks involve establishing a common
computational frame of reference for relating all the process
parameters: actual car body location, actual car body shape, and
errors in the robot arm.

Weld beads are typically 10-15 mm wide and 2-5 mm high,
although much larger and much smaller ones can be found. The
bead, in general, lies on a curved surface in space, and the task
is to remove the bead and leave the surface the same general
shape, with the bead region interpolated in some nonlinear way in
the surrounding region.

The data interpretation, or inspection, task shown by Figure -
1-5 represents the type of task done by people with judgement
developed from many years of experience(22), The basis for
their judgement is generally founded on incomplete understanding
of the underlying physics., The problem for the operator is to

determine whether the low-speed dynamometer data recorded

indicates that the bearing is good or bad and whether it will have
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a long or short life expectancy. The operator must determine if
the lubricant is sufficient or has degraded (increase in the
average noise level), if the bearing contains particles of
contamination or has metal damage (specific torgue artifacts), if
there is misalignment between bearing pairs, or whether the

bearing preload is correct.

1.3 Research Focus

The initial problem posed as a research focus was the process
problem - manual finish grinding of automobile body filler
material used to cover seams between body panels, The prime focus
was shifted away from this topic for two reasons., First, it was
extremely difficult to develop a reasonable grinding model for
testing our theories in the time frame of this grant. The second
reason was that since we had two grants in this area (NSF! and
ONR) a broader research program would result if there were two
foci instead of one. That is, one focus on process tasks and the
other on inspection tasks.

Before the shift in focus occurred, the problem had been
divided into two major research activities: a) geometry or
surface reconstruction of a surface from height measurements above
a reference plane, and b) process control. One S.M. thesis on
surface reconstruction was generated during the time frame(23),

The principal focus of this grant during this past year has
been the inspection or data interpretation problem. The test bed
for testing theories was the low-speed dynamometer used for
testing precision ball bearing assemblies.

Inspection tasks are important because automating groups of
tasks usually requires multi-level inspection to be performed.

Levels vary from simple binary go/no-go decisions, which are

1 NSF Grant No. ECS-8214366, reference (22)
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easily automated, to more complex questions which cannot be
answered readily. Decisions on higher inspection levels often
must be made by experienced experts or well-trained consultants.

One test used to inspect precision ball bearings prior to,
during and after their assembly is the low-speed dynamometer (LSD)
test. The low speed dynamometer(24), shown in Figure 1-5,
measures the drag torque between the bearing races while the
bearing is rotated at a slow speed. Manual inspection of these
analog traces can reveal significant information on the quality of
the bearing including the presence/absence of dirt particles,
metal damage to balls or races, lubrication degradation and
bearing retainer hang-up. Individual torque traces, as well as an
ensemble of traces over time, are important in determining the
acceptability of the bhearing,

The hypothesis that we used is that this class of problems is
amenable to the techniques of control system engineering and
artificial intelligence - particularly a new technique called the
engineering-based expert system.2 The engineering-based expert
system captures, algorithmically, the capabilities of human
"experts" and trained process operators in an efficient and
cost-effective manner. It combines techniques of process modeling

and identification, signal processing and detection, pattern

recognition, hypothesis testing, control theory, as well as the e e
u:_-n" _.-‘“-.: o
conventional expert system's rules and heuristics. ;uf»ia:d
a .-v " - .;

EP AL A

The general objective of this research was to apply 5::;:;:;
!’L"\.. «“a

engineering-based expert system techniqgues to complex
manufacturing tasks which traditionally require the expert or

artisan skill of a human.

2 The concept was new when this grant proposal was written
several years ago. Since that time a number of people have become

interested in this approach.
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1.4 Report Organization

The research carried out has demonstrated the feasibiity of
an engineering-based expert system for the inspection task
chosen. Further, a Navy program office has decided to implement
the technique into a production environment in one of their
suppliers of precision mechanisms.

The remainder of this report is organized as follows:

Section 2.0 Research approach.

Section 3.0 Research, prototype system, and

comparison with the manual method.

Section 4.0 Conclusions, and recommendations for

further research.

. N
)

..
haR
2
v

'+
0

‘s




L A T R
IS Y T

-13~

2.0 RESEARCH APPROACH

2.1 Traditional Expert Systems

Artificial intelligence (AI) may be loosely defined as the
science of enabling machines (computers) to learn, reason, and
make decisions., The expert system is an AI system which performs
a specific function normally performed by a human expert. The
term expert implies that a substantial amount of acquired skill
and knowledge is required to perform the function. The AI expert
system must embody the required knowledge and have an algorithmic
structure by which to process external inputs in the context of
this knowledge. 1In the traditional expert system, the knowledge
exists in the form of heuristic rules. These rules are heuristic
because they are derived from experience rather than fundamental
scientific principles. Physical models based on first principles
are seldom explicit in the knowledge base but may be implicit in
the rules specified by the expert. In this way, the traditional
expert system is imitative; it attempts to duplicate the human's
reasoning process without attention to the underlying science of
the problem at hand. BAn overview of traditional knowledge
representation methods may be found in reference (25),

The algorithmic structure by which the rules are implemented
can be one of several types(zs). The forward-chaining or
data-driven structure proceeds from the available data and invokes
rules as required to find a path to a goal or conclusion. In the
backward-chaining or goal-driven structure, a goal is specified by
the hypothesis of a conclusion. Rules are then invoked and data
is acquired to verify all necessary antecedent conditions or
subgoals. Thus a path from the data to the conclusion is found in
reverse. In general, the nature of the problem dictates which
structure is more favorable., It is possible to combine
forward-chaining a Jd backward-chaining.

The traditional expert system concept has been applied to the

fields of medical diagnosis, machinery troubleshooting,
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geophysical exploration, engineering design, and many
others(26), A very brief summary of a few successful systems is
presented here,

In medical diagnosis, expert systems are used to deduce
medical conditions given a set of observed symptoms, Perhaps the
best known system is MYCIN(27), MYCIN was developed in the
1970's at Stanford University to aid physicians in the selection
of antibiotics for the treatment of severe infections. The system
contains about 500 rules associated with medical diagnosis which
are implemented in a goal-driven architecture. MYCIN incorporates
the capability for the user to inquire why and how conclusions
were reached. Although generally considered an academic success,
MYCIN has not been accepted in the health care industry. MYCIN is
not used to detect symptoms, only to analyze them according to
heuristic rules defined by an expert. Another medical diagnosis
system, PUFF(28), incorporates the ability to automatically
acquire data on a patient's pulmonary functions. This data and
background information supplied by a physician are interpreted
according to a set of 55 "if-then" rules to diagnose pulmonary
function disorders., Much work has been done in the automatic
interpretation of electrocardiograms using statistical pattern
recognition methods (29), However, these systems are generally
not considered expert systems because of their basis in pattern
recognition and signal processing rather than heuristic knowledge.

Expert systems have been developed for the diagnosis of
machinery. One such system, caTs-1(30) ig being used to
troubleshoot diesel electric locomotives. CATS-1 uses
approximately 530 rules in a forward and bhackward chaining logic
to interactively diagnose locomotive problems and suggest repair
procedures, Like MYCIN, this is a consultation system and
includes no means of acquiring data except through a human
operator.

In geophysical exploration, expert systems can be used to

identify geophysical structure and features (e.g. oil or mineral

deposits) from seismic measurements. One such system, PROSPECTOR,
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has located a previously unknown molybdenum deposit(26), rike
MYCIN, PROSPECTOR has no understanding of the basic physical
principles underlying its conclusions but is based on a large (but
still incomplete) set of heuristic rules,

Expert systems for design have been developed for a number of
applications such as the design of V-belt drive trains
(VEXPERT)(31), complex gear train design (IMp)(32),
configuration of computer components (R1){26), and heat
exchanger design (HEATEX)(33), some systems, such as VEXPERT,
attempt to embody the methodology of design in rules. VEXPERT
uses a Design-Evaluate-Redesign architecture which is applicable
to a variety of problems by substitution of the appropriate
analysis algorithms and constraints. Other programs such as
HEATEX, which uses 115 rules and formulas to design optimal heat
exchangers, and IMP stress the analysis inherent in design rather
than the methodology. The analytical formulas and design "rules
of thumb" associated with a particular problem indirectly
represent physical models. The application of these formulas and
rules is, however, largely heuristic. R1 is a data-driven system
used to determine the physical layout and interconnection of
components of computers based on rules of thumb. R1 is in routine
use,

All of these systems are based on emulation of the human
expert. Logic is rule-based, where the rules are those which the
human has chosen to use. Where explicit analysis is required, as
in some design systems, the algorithms selected.are those which
the human can best understand. We argue that these rules and
algorithms, which are apparently well-suited to the human mind,

are not necessarily well-suited to a digital computer.

2.2 Engineering-Based Expert Systems

The traditional expert system is a problem solving technique
which is well suited to problems which cannot be rigorously
analyzed for lack of understanding or due to inadequate analysis

techniques. For example, medical science is not fully understood
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and the use of heuristic knowledge obtained from experienced beloh,
physicians is necessary in creating systems for diagnosis and

treatment. However, if the underlying physics and mathematics of . ;q

-

'O
the problem are sufficiently well understood, then the use of ;'és
heuristic knowledge may not be appropriate. Wwherever possible, . ‘g“‘

mathematics is the preferred representation of knowledge for
- precision, clarity, and the ability to be verified. Figure 2-1
g illustrates the typical spectrum of problems and problem solving
= techniques. Problems range from clear, well understood, fully

analyzable to fuzzy, poorly understood, and not analyzable, The

applicable classes of systems range from engineering analysis

L,

systems to traditional expert systems. The middle ground contains

problems which are partially analyzable but also require some

o

degree of human expertise. This class of problems is the domain

g™
-
:

of the engineering-based expert system. Admittedly, the

. a
PN
LA ]

boundaries between these classes is a matter of arbitrary

X

semantics. However, the salient feature of the engineering-based

‘3

expert system is the integration of rigorous analytical techniques

I
H

with heuristic techniques.

.l ‘)- !

The engineering-based expert system is the result of a

' ./".’

o

combination of formal engineering analysis, mathematical
processing techniques, and traditional expert system techniques.
Analysis leads to a fundamental understanding of the problem and

. the development of models which can be augmented by the heuristic

- rules of the expert. The models represent precise knowledge about
the problem and the heuristic rules capture the skills of the
expert, Mathematical processing can be substituted for human
perception and reasoning processes which cannot be adequately
expressed as rules. Mathematical techniques may also be used to

enhance data prior to the application of heuristic rules by

..
.
s

.
a
.".

filtering or transforming to a more convenient form. Determining

1

e
o
A 4
P

the boundary of analyzability and the optimal combination of

.f 0
k]
P
H
)

., heuristics and analysis for particular problems is a future

v

research issue. ®

02,

{f Analytical models and heuristic knowledge have been

'l

é
B
2ol

- integrated for expert systems in renal physiology(34), for PONIAL
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process control(35), for control of a nuclear reactor(36), and
for intelligent automatic control systems(37) in general.
Mathematical processing techniques from the fields of
estimation and control, signal processing, and statistical pattern
recognition have been applied to a variety of expert problems such
as radar and sonar detection(38,39),6 electrocardiogram
classification(29,40), gpeech recognition (38), and
geophysical testing(38), These signal processing and pattern
recognition systems are not usually considered expert systems
because they do not mimic human actions. However, these
analytical methods are an important part of the engineering-based
expert system concept.
The advantages of the engineering-based expert system

approach are numerous:

1. Because of the engineering analysis, rules may be stated
in terms of any physical parameters of the problem rather
than those solely perceived by the human. Furthermore,
redundant or conflicting heuristic rules can be

systematically eliminated.

2., The system will be more adaptable to changes in the
problem or the environment because many parameters will
have a known physical significance. Those changes will
be accommodated by parametric variations rather than

through structural changes to the system,

3. Efficient mathematical processing can be substituted for
less efficient and possibly unpredictable symbolic

processing,

4., The engineering analysis will allow rules to be stated in
a more concise form and mathematical processing will be
the preferred knowledge representation., Therefore, the

total number of rules may be reduced.
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These advantages are exemplified by the LSD analysis system

described in reference (21) and in section 3 of this report.

. R S Y
LY SV e

2.2.1 Knowledge Requirements

The knowledge base for the traditional expert
system consists of rules specified by the human expert.
These rules are usually stated in a symholic rather than
mathematical form.

The knowledge hase for the engineering-based expert
system consists of both process models and rules. The
process models are the result of formal analysis and
represent, in a concise mathematical form, knowledge
about the process of interest, The models may express
an exact deterministic relationship between the process
parameters, inputs, and outputs, or they may express a
probabilistic relationship between the parameters,
inputs, and outputs (a stochastic model). The rules
associated with the engineering-based expert system may
be different and fewer in number than the heuristic
rules associated with the traditional expert system,

This knowledge base can be more extensive than that
of the traditional expert system because the process
models may contain information that is not explicitly
known by the expert or information that is only implicit
in the expert's heuristic methods. In many cases, the
experts do not understand the underlying mathematics and
physics.,

Table I summarizes the distinction between the

knowledge bases of the two systems,
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Table I:

Traditional Expert System

Rules derived empirically
from expert

Little or no physical insight
into process

Indirect access to process
variables

-20~

Knowledge Basges

Engineering-Based Expert System

Rules derived from rigorous
analysis of process

Physical insight through
process models

Explicit access to process
variables
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2.2.2 Algorithmic Requirements

«Ze
P

The primary tool used by the traditional expert
system is symbolic logic. Data are processed by making
a series of decisions according to the rules specified
in the knowledge base.

The engineering-based expert system operates using

- Signal processing and estimation
- Pattern recognition
- Hypothesis testing

- Process models

I’..-

as well as symbolic processing. The intensive use of

o

R
'
r' 1
g

numerical computation differs from the traditional

e
g
L}

I;

expert system approach which relies almost totally on

e
L
s &£
LA H
,
.

symbolic processing, In general, algorithms may be

1,'

implemented in a data-driven architecture or a

goal-driven architecture. Most signal processing

AN

testing can be goal directed.

techniques are inherently data-driven, while hypothesis {
o

f"l"r

The distinction between symbolic processing and

numerical processing necessitates different hardware and

software configurations for the two approaches. Most
current symbolic processing languages have inadequate
numerical manipulation capabilities. Likewise,
conventional numerical processors and languages
frequently have inadequate symbolic processing
capabilities. The engineering-based expert system

requires both capabilities and therefore has unique

architectural and language requirements,

e e e
. - .
G %% S T

r e

N S AP SR L.

. . B PR . " . .~ - e 3 ~'.'.'-' - " T
-ral DR ORI PRI WIS T T D% A I D I




-22-

3.0 THE LOW-SPEED DYNAMOMETER INTERPRETATION SYSTEM

3.1 Introduction to the LSD Research Problem

An important issue in manufacturing is part inspection and
quality control. Inspection operations may provide information
about the condition of individual parts as well as information
about the status of the manufacturing system. The complexity of
inspection operations may vary from simple binary tests, such as
the presence or absence of a component, to tests involving
extensive measurement and evaluation procedures. The simple
operations might easily be automated because only binary yes/no
decisions are required., The more complex operations often regquire
trained experts to interpret results and make decisions. These
complex decision processes can be automated by embedding the
experience and knowledge of the expert in a computer program.

An example of a complex inspection operation is the low-speed
dynamometer (LSD) used to test instrument quality ball bearings
during their manufacture, assembly, and integration into
components (24,41),  The LSD, illustrated in Figure 1-5, measures
the torque required to rotate a bearing or bearing assembly at a
slow speed - typically 1 revolution per minute. At this slow
speed the lubricant film is thin enough to allow virtual
metal-to-metal contact hetween balls and races, Two major
mechanisms contribute to this low-speed drag torque: sliding
friction forces due to pivoting and slipping motions in the
ball-to-race contact zones and geometric profile forces due to
asperities of the ball ani race surfaces. In lightly loaded
instrument quality bearings, the geometric profile torque can be
as large or larger than the friction torque. The torques can be
distinguished by operating the LSD in two directions - friction
torques will reverse polarity with reversed direction while
qeometric profile torques will not. The torque is usually
measured and recorded for 1 or 2 revolutions of the bearing.

Measured torques from both mechanisms can reveil significant

information abhout the condition of the bearing, The sliding
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friction torque is indicative of the loading of the bearing and ?;3:: .
e
allows the LSD to be used to adjust bearing preload and to '
a4 e 2 %]
. . . . . . . . A,
identify misalignment of paired bearings. Geometric profile :iz¢:¢
torque can indicate ball or race surface roughness, damaged balls Gd}gﬁxk
A ‘_\""-." '
or races, and particulate contamination. The characteristics of \}a;xfxi‘
N

the data can be used to determine the exact nature of the
geometric profile.

Traditionally, the LSD measurements are interpreted by a
trained expert who visually inspects analog plots of bearing drag
torque, Although there are deterministic physical relationships
between the condition of the bearing and the torgque neasurement,
the expert's methods are essentially empirical. He relies chiefly

on visual recognition and experience to assess the quality of the

bearing.

This problem falls into the "middle ground"” of Figure 2-1
where the physics can be explained intuitively but are not fully
analyzable. Therefore, the engineering-based expert system is the
appropriate technique for automation. The remainder of this
chapter will describe the system that was carried out. Section
3.2 describes typical bearing problems that are revealed using the

LSD. Development of detection algorithms and acceptahility

criteria for bearing artifacts is delineated in Section 3.3. The
algorithms and criteria were developed and implemented a computer
system which performs LSD interpretation at the level of an

expert. The performance of this system is characterized in

Section 3.4

3.2 Characteristics of LSD Torque Measurements

Typical time plots of LSD torque measurements are shown in
Figure 3-1, Figure 3-1(a) shows a measurement of the low-speed
drag torque for 2 revolutions of a bearing of acceptable quality.
Figures 3-1(b) - 3-1(e) show torque measurements for several
unacceptable bearings.

Figure 3-1(b) shows a torque measurement exhibiting metal

damage. The metal damage is characterized by sharp excursions in

torque which moves first in the direction of decreasing magnitude
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. (c) LSD Torque Trace Displaying Particulate l e ay
- Contamination.

20~ (d) LSD Torque Trace Displaying Retainer -
- Hang-Up. -

(e) LSD Torque Trace Displaying Mlsallgnment
20 - of an Assembled Pair.,

Fig. 3-1. Typical LSD Torque vs., Time Plots
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as the ball (or race) rolls into the area of damaged metal

-
-

followed by increasing torque as the ball (or race) rolls out of
the damaged area.

Figure 3-1(c) shows a torque measurement exhibiting

.
PSS

g

particulate contamination. The contamination is characterized by ). 53&*):
'l‘,c"‘a‘ i iy

P
-

sharp excursions in the torque which move first in the direction
B of increased magnitude as the ball (or race) rolls onto the
particle followed by decreased magnitude as the ball (or race)

rolls of the particle.

Figure 3-1(d) shows a torque measurement displaying retainer

hang-up. This is evidenced by a slow torque excursion due to

increased friction from excessive rubbing of the retainer on balls

T Y

Or races.

q
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Figure 3-1(e) shows a torque measurement displaying
misalignment of a preloaded bearing pair. Misalignment results in
a sinusoidal torque variation at the bearing rotation frequency.

The distinction of well-developed features associated with
s different flaws is generally reliable and the expert has no

problem identifying and classifying flaws on the basis of these
patterns. The expert must identify the bearing problem rather
than make a simple good/bad decision because certain problems can
be easily resolved whereas others may be irreparable, For
instance, contamination can be resolved with a thorough cleaning,
f: but metal damage requires replacement of the race or ball.
o If the bearing defect artifacts were as sharply defined as

illustrated in Figqure 3-1, this problem would be straightforward

-~ to solve and not a suitable candidate for research. The artifacts

e
‘
’

AR

- are not, however, distinct, A single torque trace may exhibit

EAP S

-~ more than one defect. There is no guarantee that different

B T AL

bearing failure modes are mutually exclusive, For example, a

-

bearing may suffer from particle contamination, metal damage, and

s
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retainer hang-up at the same time. It is important to detect all

aQ$ e,

of these failure modes because each requires a different action on

the part of the assembler. In addition, the salient

B PSS

characteristics of the artifacts associated with each failure mode

7, < .,

are sufficiently different that no single pattern recognition or

V)

)
2
D

signal processing technique is likely to be effective for all
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modes. The development of the various detection algorithms and

acceptability criteria is described in the next section.

3.3 Development of the LSD Interpretation System

PrE k4 e s

3.3.1 Interpretation Rules

The LSD expert evaluates the quality of bearings by
visually inspecting analog time-~histories of torque and
interpreting them according to a set of largely
heuristic rules. Below we list some of the rules
employed by the experts at the Draper Laboratory's
Bearing Center. The rules presented here represent only
the top-level rules. A purely heuristic rule-based
approach to expert system design would require many more
rules and sub-rules to define many of the concepts
introduced in the top-level rules.

N These rules were obtained by interviews with the
experts. This was a tedious process which evolved over
-, a long period of time (over six months) and required

, many iterations. The difficulty of obtaining such rules
is well documented(26,42), 1n the end, the expert
system engineers themselves became experts in LSD
interpretation. This was instrumental in the derivation

of the system to be described.

Rule 1: A bearing is acceptable if no abnormalities (to
be defined below) can be detected in the LSD torque

measurement.

Rule 2: The state of assembly of the bearing must be
considered in the interpretation of the LSD torque

measurement,

Rule 3: The first torque measurement obtained from a

new bearing determines the baseline average torque and
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baseline peak-to-peak torque amplitude for that bearing.
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Rule 4: The average torque and peak-to-peak torque

amplitude must be less than or equal to those of the

last test made on the bearing,

Rule 5: The magnitude of the average torque level must

be within certain specified bounds.

Rule 6: The peak-to-peak torque amplitude must be

within certain specified bounds.

Rule 7: A torque excursion is defined as a rapid

variation of torque from its average value,

Rule 8: Metal damage is manifested by torgue excursions

of decreasing torque followed by increasing torque,

Rule 9: Particulate contamination is manifested by
torque excursions of increasing torque followed by

decreasing torque,

Rule 10: Misalignment of assembled bearing pairs is
manifested by torque which varies sinusoidally at the

rotation frequency.

This set of rules introduces concepts such as
torque excursions which are very difficult for the
expert to define verbally. 1In fact, the best
description of such phenomena that the expert can give
is to show examples. The engineering-based expert
system approach overcomes this difficulty by applying a
mixture of signal processing, spectral analysis, and
pattern recognition techniques in addition to geometric
and physical modeling of the torque generating
mechanisms. The underlying philosophy of this approach

is to unify the replication of human methods with
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physical insight into the process (the mechanics of the
bearings) and well established signal detection
techniques. The detection of metal damage is a good
example of this unification., It is known that the human
expert identifies metal damage by the presence of blips
of a certain shape in the torque trace, such as those
shown in Figure 3-1.

Furthermore, the nature of these blips can be
explained by intuitive models. An automated system
capable of detecting metal damage blips must unify the
visual mechanisms of the human expert and the modeled
torque generating mechanism,

In addition to the interpretation rules, the expert
employs some numerical criteria for acceptance of
bearings. Typical acceptability criteria for an

instrument bearing are listed in Table II.

3.3.2 Data Models

The signal detection and pattern recognition
techniques used in the engineering-based expert system
are based on data models for all of the relevant
features (e.g. metal damage blips) of the torque
measurement, In general, such data models may be

physical (derived from principles of physics) or

functional (based on observed data characteristics and
statistics). 1In the case of the LSD procedure,
intuitive physical models exist for all of the torque
generating mechanisms of interest. Metal damage,
particulate contamination, and poor surface quality

produce geometric profile torques which have been

':\ RN

i . CE
rigorously analyzed(43), These mechanisms are .-:.-_\{:5
SUeseN
P s AR RS
sensitive to many parameters such as the size, shape, {x¢qi'
RGN

» - a

and hardness of particles which are unknown and cannot
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be estimated. Furthermore, the exact values of such
parameters are not of interest in evaluating a bearing.
Therefore, functional models are used to describe the
observed LSD data. These models are discrete-time
models because the automatic interpretation system will
operate on digitized, sampled data.

Figure 3-2 illustrates the overall data model for
the torque data produced by the LSD. The measured

torque is considered the sum:

T total (k) = T0 + T1(k) + Tz(k) + T3(k) + T4(k) (1)

where Tg 1is the mean torque,
T, 1is the hash torque,
T, 1is the torque due to misalignment,
T3 is the torque due to contamination,

T4 1is the torque due to metal damage, and

k is the time index

Such a model will always be possible if one
component of the right-hand side of equation (1) is
allowed to be an arbitrary function, 1In this case, the
hash torque, T, is define” to be the component of
measured torque which cannot be accounted for as mean
torque, misalignment torque, particulate contamination,

or metal damage., Therefore:

T1(k) = Ttotal(k) - T0 - Tz(k) - T3(k) - T4(k) (1a)

. _"', e, '4.>
- W) '4_".?
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The nature of the individual torques are such that
different modeling techniques are used for each., The
chosen models are the basis for the detection schemes
employed by the engineering-based expert system., The
following models are used for these components of the

torque,

Mean Torque: By definition, all other torque
components are zero-mean. Therefore Ty is the

arithmetic mean of Tigeal.

Hash Torque: The hash torque is modeled as an

arbitrary random noise sequence.,

A convenient method to capture the statistical behavior
of such a signal is the autoregressive model, The
autoregressive (AR) model(44,45) jg a parametric model
for the behavior discrete-time signal. It is
essentially a discrete linear system excited by white
noigse. The parameters of the system are chosen to
produce desired statistics of the output, The AR model
is a convenient representation for the hash torque for

several reasons.

1. It is a spectral matching method. It is, in fact,
an efficient method for estimating spectral

densities(46),

2. Many methods exist for choosing the model

parameters to optimally model a given signal.

3. The statistical behavior of a signal can be
described using a finite number of model
parameters, greatly reducing the data storage

requirements,
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4. It is a discrete linear system driven by white

noise.

The AR representation for the hash torque signal Ty(k)

is

T1(k) = -
n

an T1(k-n) + u(k) (2)

[t e]

1

where
a, are the model parameters,
p is the model order, and

u(k) is the driving white noise,

The spectral density of an AR process given by
Equation (2)

2 (3)

3
|
s
e 2

Lo T

where q is the intensity of the input u.

The model order, p, and the model parameters,
{an}, are chosen to match observed spectral properties
of a given signal., A method for choosing the parameters
is given in Appendix A. This method can be applied to
LSD data which is judged to free of defects (i.e,,

Ty = T3 = T4 = 0) to estimate the parameters.

Misalignment Torque: The misalignment torque is known

to be a sinusoid at the frequency of bearing rotation:

o -,
NSNS BA A NN

-
e




Rl N SN St e Brme aoes aius

~

T ——

-34~

To(k) = A cos (Qkdt + 6) (4)

where A is the misalignment amplitude and
8 is the phase of the sinusoid.

At is the sample interval,
Particulate Contamination and Metal Damage:

Because of their similar nature, particulate
contamination and metal damage can be modeled
similarly. They will be modeled as a low-density shot
noise process(47:,48), The general shot noise process

is

s(t) =] b, hle-t;) (5)
i

where h(*) is a given function,
{t;} is a set of Poisson points, and

{bi} is a set of purely random variables independent

of {ti}.

An interpretation of the shot noise process is a series
of time functions, h{t), occurring at random times, For
the purpose of modeling metal damage and particulate
contamination "blips," the function h(t) can represent
the shape of such a blip, t; will represent the

unknown times of occurence of the blips, and bh; will
represent blip intensities., To formulate a
discrete-time shot noise process, we require that the

sampling interval, At, is small enough so that

AAt « 1
(6)
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where A is the Poisson parameter (average density of
events) a series approximation of the Poisson

probability function given by (47)

2 (6 = prl s in ti .dt}_(xt)“e-xt
n = rin events 1n ime perio = —T

{(7)

can be stated as

Po(bt) = 1 - At (8)
Pi(At) = At
P (At) = 0 n>1

The physical interpretation of this condition is that no
more than one event (blip) may occur during one sample
interval, At. Furthermore, the probability that an

event will occur during any sample interval is AAt,

3.3.3 Detection Algorithms

Given the LSD data models described in the previous
section and illustrated in Figure 3-2, the first
function of the engineering-based expert system is to
decompose the torque measurement, Teotals into its
relevant components. The algorithms to perform this
decomposition are signal processing algorithms based on
the nodels for individual torque components. The

requirements of these algorithms are stated below.

Te}
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1. The system will operate on digitized data sampled

with uniform sampling period 4t.

2. The computations do not need to be performed in
real-time, therefore we are not restricted to

real-time, casual systems,

3. The results of the processing algorithms must be:
the value of the mean torque, the number and
magnitudes of particulate contamination and metal
damage blips, the magnitude of misalignment torque,
and the amplitude and spectral properties of the

hash torque.

The architecture of the system is illustrated in
Figure 3-3. The overall approach is subtractive -
individual torgque components are estimated and removed
from the data in succession.

The data is assumed to consist of finite records of
N samples of torque sampled with period At, The
individual signal processing techniques are described

below,
Mean torque: The estimated mean torque, T, is the
sample mean of Tioeais

N-1

To = Ttotal(k)

f o~

1

N i=0

Misalignment Torque: The misalignment torque is a
ginusoidal torque of a known frequency. Therefore, its
amplitude and phase may be estimated by a Fourier

decomposition of Tiotay.
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; (k) = A cos (At 49) (10)
2

= B cos QAt + C sin QAt

where
A= B24 2
® = tan-1(c/B)
2 N-1 "
B= _ ) ocos(f idt) [Teoearli) - T] (11)
. r (o)
N i=0
2 N"'1 ~
c=— ] sin (@ ibt)[Teorarti) - 1] (12)
N i=0

Separation of Hash Torque from Metal Damage
and Particulate Contamination

Having detached the mean torque and misalignment
torque, the remaining task is to separate the blips from
the hash torgue. Based on the expert's definition of
torque excursion as a rapid torque variation, a
threshold detection algorithm can be used to distinguish
blips from hash torque. Using the symbol Z{(k) to denote

the torque measurement without mean or misalignment;
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.




Z(k) = Ty(k) + T3(K) + T4(k) (13)
and the symbol V(k) to denote blips of both types:
V(k) = T3(k) + T4(k) (14)
we may write
Z(k) = Ty(k) + V(k) (15)

The AR model, equation (2), may be used as a predictor

for the hash torque:
= - k—
T, (k) 1 a T (k-n) (16)

and a pseudo-measurement, Z1(k), can be created,

zV(k) = 2(k) - Ty(k) (17)
= v(k) + U(k)
which consists only of blips and white noise, We may

then apply a threshold to the pseudo-measurement to

detect blips on the basis of their magnitude:
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2" (k) -y if 2 (k) >

vix)y = { o if |z1(k>| <Y

1 1
Z (k) +v if 2 (k) < - Y

(18)

where Y is a predetermined threshold. The threshold
value must be selected according to the magnitude of the
blips which must be detected and the known statistics of
the white noise, U(k). Because only estimates of the
hash torque are available, we must create an updated

estimate,

Ty(k) = 2(k) - v(k)
(19)

to drive the predictor:

T1(k) = -
n

a T (k-n)
n

|t ]

(20)

T(k) is an a priori estimate of the hash torque
because it is made without knowledge of any
measurement. T;(k) is an a posteriori estimate of the
hash torque because it is made after the measurement is
available. This nonlinear filtering scheme is

illustrated in Figure 3-4. A more detailed derivation
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is given in Appendix B, Typical output is illustrated
in the lower plot of Figure 3-5.

The principle of operation for the filter is that
the AR predictor, equation (20), is used as a whitening
filter to reduce the amplitude of the hash torque before
applying the threshold.

The detection algorithms are summarized in Table
III.

Work is ongoing to apply statistical pattern
recognition techniques to the problem of detecting metal
damage and particulate contamination. A master of
science thesis is in progress which will apply the
Karhunen-Loéve method of feature extraction(49), Thig
method will permit the detection of arbitrary signals
based on a learning set provided by the experts. 1In
this way, the process of describing such signals
heuristically can be circumvented. This thesis will be

completed by August 198S5.

3.4 Performance of the LSD Analysis System

The detection algorithms described in the previous section
are combined in a software architecture illustrated in Figure
3-6. The analysis software was written in the C programming
language and currently runs on an IBM XT personal computer, C is
an efficient, modular and structured general purpose programming
language. 1Its flexibility allows it to be useful for low-level
data input as well as high-level graphics routines.

The torque data from the dynamometer is sampled and digitized
at 50 Hz, The dynamometer has a bandwidth of about 18 Hz (see
Appendix C). The first operation of the system is to calculate
the sample mean and variance of the torque measurement. A bearing

can be rejected if the mean torque or torgue variance is too

large, The mean and variance are not, however, sufficient to

1.a
o

.
x

identify the nature of the failure. The second element of the

v
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a
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system is the nonlinear filter to detect and remove artifacts due
to metal damage and particulate contamination., Running totals of

the number of such artifacts are maintained. The remaining torque

«TaTe ) NEEEES s 2 = .

data (after removal of the metal damage and contamination blips)

are tested for misalignment (if appropriate) and then tested for

excessive amplitude in two frequency bands - above and below 1

e N

Hz. The signal below 1 Hz contains the effects of race

- out-of -roundness and misalignment., Misalignment is detected as
described in the previous section., The signal above 1 Hz contains

l the effects of lubricant degradation and poor surface finish - the
causes of "hash." The bearing will be rejected if the average
amplitude in either of these frequency bands exceeds preset
values,

) The analysis system has been throroughly tested on over 50

digitized LSD torque traces from routine tests of G-Star Momentum

- wheel ball bearings at various stages of their assembly. The

automatic analyses have been consistent with the judgement of the

' experts., Appendix D contains a summary of the automatic
analyses. The analysis system has exhibited a more sensitive
threshold of detection. This, as a consequence, has heightened

sensitivity to the issue of how the LSD test results relate to

. bearing life, Previously, the criteria of acceptability were

)
-

based solely on the sensitivity limit of the expert. The expert

v e v
P

rejected a bearing if he could detect any artifacts of failure

vy
.

N modes. As dgreater sensitivity can be achieved, however, the

T

) criteria of acceptability must be adjusted to reflect the actual

operational requirements of the bearing rather than the limits of

artifact detectability.

Sample output from one LSD analysis is shown in Figures 3-5

; and 3-7. The upper trace of Figure 3-5 shows the raw dynamometer
data from one test on a bearing. The torque signal contains both
low and high frequency components as well as blips. These blips
are indicitive of either metal damage of particulate

) contamination. The lower trace is the torque data after the
nonlinear filter and threshold detection have been applied. Here,
only the spikes remain; the low and high frequency components are

' subtracted from the upper trace. This portion of the signal is
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BEARING ANALYSIS PROGRAN

F“— > J

| g tj& A

| LOW SPEED DYNAMOMETER i s s
! Version 2.0

i

—_— '

vIAGHO0
U v 'l:i_élz

Friday December 20, 1985 File: data.47A

TEST INFORMATION

Configuration: DUMMY WHEEL Bearing ID(s): 124 B 130 B
Direction: CCW Load: 9, 000
Preamp atten: x4 Transducer sens: 4.000

Operator: SB Moment arm: 1

MEAN TORQUE TEST

measurement: mean torque value
value: 9.377427
decision: mean value vithin bounds

TORQUE VARIANCE TEST

meagurement: varisnce of torque
value: 1.121466 :
decision: variance out of bounds
BLIP DETECTION & CLASSIFICATION
i 8 violations: 7 Metal damage
@ Particulate contamination
1 Undetermined blips
METAL DANMAGE
point 726 max: 2.39 min: -1.78
point 1296 max: 1.87 wmin: -~-4.53%
point 1938 max: 1.98 min: -~-4.78
point 2722 max: 2.64 min: -4.89
point 3419 max: 1,13 min: <-3.78
point 4054 max: .57 min: -2.43
point 4804 max: 2.94 wmin: -3.97
UNDETERMINED BLIPS
point 5606 nax: .20 min: -4.53

POWER SPECTRUM ANALYSIS

measurement: amplitude < 1 Hz

value: 0. 990287

decision: excessive amplitude

neasurement: amplitude > 1 Hz

value: 1.372677

decision: excessive amplitude .

MISALIGNBENT TEST S

o0

messurement: sinusoidel amp 1/6@ Hz :Q._ )

value: 2. 124058 oA Tt

decision: misalignment not detected A
o~
N

Fig. 3-7. Summary Results for a Typical LSD Analysis '\.\
r‘.'.-
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analyzed by the blip detection algorithm, The clean data (raw
torque data minus the blips) is analyzed for misalignment (on
bearing pairs) and is spectrally analyzed in a low and high igsbﬁb '
frequency band. e .‘}\é

Figure 3-7 is a summary of the test results, The top of the ¢ \ VSRE
summary contains information which uniquely identifies the bearing
and the LSD test parameters. The result of the mean torque test
is shown next. 1In this case the mean torque is within acceptable
limits. The torque variance, however, is too high. This fact
would have been visually recognized by the experts and the bearing
would have been rejected. The results of the blip detection and
classification algorithm indicate that the seven of the eight
blips shown in Figure 3-5 are a result of metal damage and one
blip cannot be positively identified as either metal damage or
particulate contamination. The misalignment test is not performed
since only a single bearing is tested (i,e., not a bearing pair).
The power spectral analysis indicates excessive amplitude in both
low and high frequency bands. The analysis of the LSD test
indicates the bearing is damaged. The torque variance, metal
damage blips and excessive amplitude render this bearing
unacceptable. The bearing must be dismantled, cleaned and the
source of metal damage identified,

The analysis results of an acceptable bearing are shown in
Figures 3-8 and 3-9., The torque traces (Figure 3-8) show and the
summary information (Figure 3-9) confirm that this bearing
contains no metal damage or particulate contamination, The
bearing is within acceptable limits in the other tests: mean
torque, torque variance and power spectral analysis. This bearing
ig acceptable and would have continued in its integration into a

component.,
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data.230

Scaled dynamometer data

Filtered dynamoneter data

Raw and Filtered

Acceptable LSD Data:
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LOW SPEED DYNAMOMETER
BEARING ANALYSIS PROGRAM
Version 2.0

Friday December 20, 1985 File: data. 33A

TEST INFORMATION

MEAN TORQUE TEST

Configuration: SINGLE Bearing ID(s): 131 B
Direction: CCW Load: 9. 000

Preamp atten: XS Transducer sens: 4, 000
Operator: JL Moment arm: 1
measurement: mean torque value

value: 6.537896

decision: mean value within bounds

TORQUE VARIANCE TEST

measurement: variance of torque
value: 2.160510
decision: variance within bounds

BLIP DETECTION & CLASSIFICATION

@ violations: @ Metal damage

POWER SPECTRUM ANALYSIS

measurement: amplitude < 1 Hz

value:
decasion:

measurement: amplitude > 1 Hz

value:
decision:

Fig .« 3-9,

@ Particulate contamination
@ Undetermined blips

- . -

£ ‘_.T'"’ &
REATIY M A S
ML AR

o
o~
L

@.767208
acceptable excessive

1.083914
acceptable amplitude

Summary Results of an Acceptable LSD Analysis
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4.0 CORCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions of Present Research

The original hypothesis of constructing intelligent modules
for non-deterministic tasks with control system engineering and
artificial intelligence techniques has been explored. Results
from this exploration have been twofold: the development of the
engineering-based expert system method of analysis and the
demonstration of this method in automating a complex task

typically performed by a human expert.

The engineering based expert system has been shown to be
effective in solving a certain class of problems. Problems
characterized as falling in between those for which mathematical
process models exist and those described completely by human
expertise are amenable to this approach. There are a great many
of these "partially analyzable" problems that exist where this

approach should prove interesting.

.—;. s

1

.

One such task, that of inspection of precision ball bearings,

35
'

has been automated using the principles of the engineering-based

H

e

expert system. The automated system has been demonstrated to be

¢

ot

as sensitive to bearing defect artifacts as the expert is. The

3

system will be undergoing extensive development and improvement
over the next year because funding has been received to install
the ball bearing inspection system on the factory floor of one of

the Navy's suppliers of precision mechanisms.

4.2 Recommendations for Further Research

The promising nature of the engineering-based expert system
methodology and its successful application to a complicated
inspection task leads us to consider extending our work into two
different directions: horizontally, across tasks different than
inspection of precision ball bearings; and vertically, deeper
into ball bearing manufacture. In other words, use the automatic
data interpretation work as an entry to explore the research

issues for an intelligent manufacturing system for bearings.
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The engineering-based expert system method is generic in the
sense that is can be applied to a range of problems. We have
chosen one particular task to test the method. The LSD
interpretation fits into a category of problems which are analyzed
by a combination of mathematical and intuitive models and human
heuristics. We feel that there are many problems similar to the
ball bearing inspection problem which can be automated using the
developed methods.

Analysis of low-speed dynamometer tests give detailed
information concerning the specific condition of the bearing. The
bearing, at the time it is tested by the LSD, has undergone many
manufacturing processes. All of these processes contribute to the
final condition of the bearing at the time it is tested. The
stages of manufacturing of a bearing and the attributes associated
with them are illustrated in Figure 4-1. Bearing attributes can
be categorized into types, principal and physical. Principal
attributes are characterized by component mechanics, surface
chemistry, materials and metrology. Physical attributes are
specifically related to the manufacture of the balls and races.
Attributes which fall into this category are clamping methods,
types of tools and materials and processing data like treatments.,
While the LSD has been designed to test the bearing after all the
manufacturing processes have been completed, it is thought that it
also contains information that can be related to the physical

attributes of bearing manufacture. Specific research issues
include whether the analysis of LSD data provides information
concerning the manufacturing of the bearing in addition to
information regarding the specific condition of the bearing. If
so, the LSD may be used as a feedback mechanism in the entire
bearing manufacturing process, The use of the LSD in this manner
is an interesting area for future research,

The research hypothesis is that the low-speed dynamometer
test data contains significant information that can be related
directly to attributes of bearing manufacture. Whether there is

enough information to successfully control the manufacturing
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processes is one of the key research questions. Also types and
needs of additional information sources would also be a key

ingredient of a research program to explore these issues.
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APPENDIX A

AUTOREGRESSIVE PROCESSES

The AR process is a convenient parametric model for the
behavior of a signal. It belongs to a more general class of
discrete processes known as linear predictors(45,46), The
linear prediction model approximates a signal s(n) as the output
of a linear filter driven by white noise.

u(n) s(n)
—_—— H(z)

The filter transfer function is assumed to be of the rational form

~1.q

blz"l

H(z) = 220 - (A1)

p
14+ akz‘k
k=1

The corresponding difference equation is

P q
s(n) = -] a s(n-k) + ] b, u(n-1)
k=1 1=0

(A-2)

which shows that s(n) is a linear combination of past outputs and
past and present inputs. If q=0, then Equation (A-1) is an
all-pole or infinite impulse response filter and s(n) is an AR
process.,

p
s(n) = Z a,
k=1 (a-3)

s(n-k) + b u(n)
')

Finally, note that hecause u(n) is assumed to be zero mean white

noise, the optimal estimate of s(n) from past values is
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- P
= - -k
s(n) L aks(n ) (A-4)
k=1
Equation A~4 illustrates the use of the AR model as a linear
predictor. The prediction error or residual is
e(n) = s(n) - s(n) = bou(n) (A-5)

Parameter Estimation

Given a signal s(n) to be modeled as an AR process, the

parameters ay are chosen to minimize the mean square prediction

error
E[e?(m)] = E[(s(n) +>l:> a_s(n-x))?]
k=1 'k (A-6)
2 2 P
E[e“(n)] = E [s%(m)] + 2 k£1 a,E [s(n)s(n-x)]
P P [ J
+I a £ a.E {s(n-k)s(n-1)
k=1 k 1=t 1 (A~7)
Necessary conditions for minimization are
9
—_— E[ez(n)] = 0 k=1...p
day (A-8)
from which we obtain
p
2E [s(n)s(n-k)] + 2 £ a E[s(n-1)s(n-k)k] = 0
1=1 1 (A-9)
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If s(n) is a stationary signal, its autocorrelation function is

Rs(m) = E [s(n)s(n-m)] (A-10)
so that Equation (A-9) reduces to

P
151 2 Rg(1=k) = -R (k) (A-11)

to be solved for k=1, 2 ..., pP. These are the normal
equations(45), —_—

Parameter Estimation from Noisy Measurements

The AR coefficients may be computed from the normal equations
(A-11) given an estimate of the first p terms of the
autocorrelation function. 1In a more general problem, it is
desired to fit an AR model to a signal s(nj given a measurement

z(n) = hs(n) + v(n) {(A-12)

where h is a known parameter and v(n) is white noise.

The measurement noise has the property that

ré (A-13)

E [ vin)v(kx)] X

E [ v(n)s(x)] (A-14)

]
o

The autocorrelation function for the measurement is

R (m) = E [ (hs(n) + v(n)) (hs(n-m) + v(n-m))]

th [s(n)v(n)] + E [v(n)v(n-m)]
+ hE [s(n-m)v(n)] + E [v(n)v(n-m)]

h2R {m) + r§
X

om (A-15)
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tally obtainable measurement autocorrelation R, as

a,[R, (1-K) - ., ) =

1

experimen
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The normal equations may be rewritten in terms of the
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APPENDIX B

THRESHOLD DETECTION OF METAL DAMAGE AND PARTICULATE CONTAMINATION

This appendix describes a method of identifying suspected
particulate contamination and metal damage artifacts in low-speed
dynamometer (LSD) torque measurements. The method is based on threshold
detection with particular attention to the selection of the threshold
value and to the reliabiity of the test. BAn extension is made to take
advantage of correlation in the measurements. It is proposed that this
algorithm can be used to locate suspicious features in the torque
measurement as a "front-end" for a more powerful pattern classifier.

Figures B-1 and B-2 show an acceptable LSD torque measurement and
one exhibiting metal damage artifacts. The metal damage is
characterized by almost periodic "spikes" in the torque as the damaged
metal area is contacted by a mating hall or race. Particulate
contamination produces a spike that is similar but of opposite
magnitude. Figures B-3 and B-4 show metal damage and particulate
contamination artifacts, respectively, on an expanded time scale. The
method described here is developed under the assumption that the
detection of these artifacts can be approximated by or reduced to (by
deconvolution, for example) the problem of detecting impulses in random
noise,

Stochastic Modelling of LSD Torque Measurements

The torque measurement, z(t), will be modelled as the sum of a
continuous random variable, w(t), and a series of random impulses, v(t);

z(t) = w(t) + v(t) (B-1)

where w(t) has a known probability density function (PDF), p,(x), and
v(t) is the "shot effect"(46,47)defined by

vit) = ) a.6(t-t,) (B-2)
3 3
J

where aj are random intensities and
tj are Poisson distributed event times.

The intensities, a4, have a known PDF, pa(x)}.
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Fig. B-1. Acceptable LSD Measurement
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LSD Measurement Displaying Metal Damage
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The random variable w(t) represents the noise in an acceptable
measurement as shown in Fiqure B-1 and v(t) represents the changes in torque
created by balls rolling over particles or damaged metal. If the bearing is
acceptable, then v(t) = 0 for all t.

The LSD measurements are sampled with period T such that

R LAVRRRIIRD PR PR

z(k) = z(kT) = w(k) + v(k) (B-3)
s
If the sampling period, T, is small enough so that :.-_‘.{
YR

AT << 1 (B-4) RSN .
- ST,
= where A is the Poisson parameter (average density of impulses) then the >
i Poisson prohability function [46] given by ,lr
B an)” At %
) Pn(t) = Pr{n events in time period t} = .(_!_) e (B-5) -
X n .;'
)

can be stated approximately as

po(T) = 1 - A
' py(T) = AT (B-6)
- pn(T) = O n>1 oo
. :d."',.‘:;\'
- l p a0 e
X This means that the probability of an impulse at any time step is ATy ) &Ld"-,;
i <
- Pr{ vik) = 0} = 1 = AT (B-7a) Pt
- TN
. Pr{v(k) # 0} = AT (B-7b) ok
':\‘:C‘;\ﬁﬂ
- i S AN
v A PDF for the random variable v(k) may be written as follows; GG LA
3 9
Py(x) = (1 = AT) §(x) + ATp,(x) (B-8)

which indicates the finite probability, 1 - AT, that v(k) is exactly zero.
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. The PDF of the measurement, z(k), is the convolution (denoted by *) of W
4 the PDF's of w(k) and v(k), i.e. L2

. :

:‘: = * 2

- p,(x) =p (x) * p_(x) Y

~ .

N = - A A * -

3 (1 T)pw(x) + pr(x) pa(x) {B-9)
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:% Threshold Detector

We shall define two complementary hypotheses: L.

i $:'KJQ:‘{
Hypothesis Hy: wv(k) =0 ;Q.»:i:‘.s:
- Hypothesis Hy: wv(k) # 0 ‘f\ti"'ﬂ'{'
- ¥+ ﬁ v1¢
X ST,
24 The decision rule is as follows; ~j£t§?¢?
- Accept Hy if lz(k) - z| <Y; accept Hy if 'z(k) -zl >Y,

:: Restated, if z(k) varies from its mean value by a difference of Y or greater,

RS then assume that an impulse is present. Two types of errors are possible.

B An error of the first kind (false alarm) occurs if H; is accepted when Hy
is true, An error of the second kind (undetected impulse) occurs if Hgy is
accepted when H; is true., The conditional probabilities associated with
these errors are

o
]

Pr{'z(k) -z| > Y |no} Pr{|2(k) -?| Y |vix) = o} (B-10)

P
2

Pri|z0) - 2| < ¥ |5y} = erl|z00 - 2| & vk # ol (B=11)

These error probabilities can be expressed as:

b Z + Y
= B, =1 -f P, (x)ax (B-12)
:- z - Y
..
C . ; + Y ':_-
S * x)dx B-13 "
> - j pw(x) pa( ) ( ) o
A 2 —_ g
. z - Y t
¥ If costs Q, and Q, are associated with errors of the first and second ' i
1 2 *Lf——e!

kinds, respectively, than an optimal threshold value, Y, can be found by
minimizing the expected loss function;

[

v v
LA

.o
* 'I v

J = Q1P1 + szz (B-14)
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The probability that the measurement z(k) exceeds the threshold values
can be found using equations (B-9), (B-12), and (B-13) to be
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1 P=1-(1-AT)(1 -P1) -)\'rpz {B-15)
Special Case - Gaussian PDF's
-; If w(k) and ay have the following probability densities;
; ~tx - ¥ 2
p (x) = e (B-16)
< w n g
A w
1 -(x - 3)2/2032
pa(x) = e (B-17)
2n ¢
a
:f:.- and if (because AT << 1)
- T W (B-18)
then the error probabilities may be written
—‘"._- Y1 - x2/20:
P =1 - /_ e dax
(B=19)

dx
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N where F(x) is the probability integral v

X
..ﬁ
- 2
Flx) = [— ' e %/2 4y, (B-21)
2%

For the variances;

and for several values of Y and a, the error probabilities are given in Table

. B~I. These examples illustrate, as might be expected, that the technique can
- be made most effective as the ratio a/0 becomes large.
f: Filtering of Correlated Measurements

In the foregoing development, no assumptions about the random variable,
w(k), other than knowledge of its a priori PDF have been required. We have
not required that w(k) be uncorrelated, If w(k) is correlated, then lower
e error probabilities could be achieved by taking advantage of the
correlation. One possible method would he to use a linear predictor as a
whitening filter to remove the correlation of the noise, w(k), which masks
the sought feature, v(k). This is illustrated in Figure B-5. We assume that
w(k) can be represented as an autoregressive (AR) process [44];

" Yo
.|.| .

el

wik) = -2 cjw(k-j) + n(k) (B-22)
-~ i=1

.t where ¢4 are the AR coefficients and

n(k) is uncorrelated noise with zero mean.
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such that w(k) can be predicted using the filter

P
wik) = -J e wik=3) (B-23)

i=

Using equations (B-3), (B-22), and (B-23), we create the "pseudo-measurement"

z' (k) = z(k) - w(k) = n(k) + v(k) (B-24)

and process this using the threshold impulse detector. 1If an impulse is
detected, its estimated intensity, v(k), is subtracted from z(k) for use by
the predictor,

If w(k) is correlated, then n(k) will always have smaller variance than
w(k) [44] and more reliable detection will result. The PDF of n(k) should be
used in place of that for w(k) when calculating error probabilities or
optimizing the threshold Y.
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APPENDIX C

RESONANCE FREQUENCY OF THE FORCE TRANSDUCER USED

IN THE LOW-~-SPEED DYNAMOMETER

This appendix analyzes the force transducer used to measure bearing

drag torque with the low-speed dynamometer. The transducer is a

cantilever beam with strain gauges to measure deflection.

The beam used in these tests is 0.745 in, wide, 0.01 in. thick, and g’-
has a free length of 1.80 in. It is made of steel. tg‘

As shown in Figure C-1, the system is modeled as a beam with one E?
end fixed and the other end attached to a rotational mass with a >

frictionless joint. The rotational mass consists of the inner race of
the bearing and the part of the testing-set-up which leans on the beam
(shown in Figure C-2).

To calculate the resonance frequency, we first used a lumped
parameter assumption neglecting the mass of the beam, and then checked
the result with continuous system dynamics. The results showed that for
the size of the bearings of interest the mass of the beam can be assumed
negligible, in other words, the first method - which is an approximation
- can be used to calculate the resonance frequency.

Using the dimensions of the bearing shown in Figure C-2, the

calculated resonance frequency turns out to be:

lumped parameter result: fr 17.53 Hz

continuous system result: fr 17.20 Hz

1

To see the effect of the mass (size) of the bearing on the
resonance frequency, resonance frequency is plotted against the bearing
mass moment of inertia ranging from 0 to 0,01 lb-in2 (Figure C-3),

(The bearing in Figure C-2 has an inertia of 0.0063 lb~in2,) As one
can see from the plot (Figure C-3), between 0 and 0.003 lb-in=2, the
effect of the mass is very strong whereas after 0,006 it becomes quite

weak.
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APPENDIX D

RESULTS OF AUTOMATIC LSD DATA ANALYSIS

LSD data has been processed for 57 individual bearings and bearing
pairs. The results are tabulated below. The following defects are
tested for:

mean torque exceeds limit

torgue variance exceeds limit

metal damage

particulate contamination

unidentified blips

low frequency amplitude exceeds limit
high frequency amplitude exceeds limit
misalignment between bearing pairs

RN

A bearing or bearing pair is considered to fail if one of the
following is true:

* mean torque and torque variance too large

* metal damage detected

* more than 3 particulate contamination blips

* misalignment detected

* high or low frequency amplitude exceeds limit

Bearing(s) & Pass/Fail Identified Problems
Test Number

Individual Bearings

124 B-1 fail TvV,HF

124 B-2 fail T™v, MO (3), UB, LF, HF
124 B-3 fail ™v, MD (3), UB, LF, HF
129 B-1 fail ™

129 B-2 fail MT, TV

130 B-1 fail MD (1), UB

130 B-2 pass

131 B-1 pass

131 B~2 pass

131 B-3 pass uB

131 B~4 fail ™v

131 B-5 fail ™v, UB

131 B-6 fail MT, UB

131 B-7 fail MT, TV, MD (5), PC (2), UB
134-1 pass

134-2 pass
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o 138 B-1 fail MD (2), UB
e 138 B-2 pass UB
142 B-1 fail MT, TV, UB
N 142 B-2 ) fail TV, MD (1), UB
Y 142 B-3 pass UB
\‘_: 142 B-4 pass UB
N
N 146 B-1 fail MT
I 146 B-2 fail MT, TV, PC (3), UB, LF, HF
146 B-3 fail MT
‘ 146 B-4 pass PC (1), UB
146 B-5 pass UB
146 B-6 pass UB
146 B-7 fail MD (6), UB
| 146 B-8 pass PC (1), UB
- 146 B-9 fail MD (7), UB
; 146 B-10 fail UB
" 146 B-11 pass UB
:.-_. 146 B-12 pass UB
g. 146 B-13 fail MD (1), UB
N 147 B-1 pass MD (3), UB
- 147 B-2 pass ' UB
N 147 B-3 fail MD (1), UB
- Bearing Pairs
- 117 B-120 B-1 fail TV, UB, LF
117 B-120 B-2 pass UB
- 124 B-130 B-1 pass
124 B-130 B-3 fail MD (4), PC (1), UB
124 B-130 B-3 pass UB
- 124 B-130 B-4 pass
- 124 B-130 B-5 fail MD (1), PC (2)
124 B-130 B-6 pass
. 124 B~130 B-7 pass \
: 124 B-130 B-8 pass
) 124 B-130 B-9 fail MD (1), UB
- 124 B-130 B-10 fail T™v, PC (1), UB
x 124 B-130 B-11 pass UB, LF, HF
" 129 B-131 B-1 fail TV, LF, HF
S 129 B-131 B-2 fail v
- 134 B-138 B-1 pass
g 134 B-138 B-2 pass PC (1)
g 141 B-142 B-1 pass

141 B-142 B-2 fail T™v, MD (1), UB
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